半径 $2\sqrt{2}$ の円に内接する鋭角三角形 ABC があり, $\angle A=45^\circ$ で, $BC:CA=\sqrt{2}:\sqrt{3}$ であるという。

- (1) BC= **である。**
- (2) $\angle B =$ \bigcirc °, $\angle C =$ \bigcirc °であり, AB = \bigcirc $\sqrt{\bigcirc} +$ \bigcirc である。
- (3) 三角形 ABC の面積は $\sqrt{}+$ である。
- (4) 三角形 ABC の内接円の半径 r は $t=\sqrt{2}+1$ とおくとき

$$\frac{\boxed{ \left(1 + \sqrt{\boxed{}}\right)}}{t + \sqrt{\boxed{}}}$$

と表され、 $r=\sqrt{ }-\sqrt{ }$ 上なる。

[東京理科大]